Answer:
Note: Check the attached image for a clearer question
From the attached image, the answers are 2,3,6,7
Explanation:
Maximum power occurs at resonance, i.e. [tex]X_{L} = X_{C}[/tex], not when impedance is greater than resistance
Resonance occurs when the Inductive reactance equals the capacitive reactance, i.e. [tex]X_{L} = X_{C}[/tex], not [tex]R^{2} = (X_{L} - X_{C} ) ^{2}[/tex]
and when, [tex]w = \frac{1}{\sqrt{LC} }[/tex]
Therefore, option B is correct
Since the formula for impedance is [tex]Z = \sqrt{R^{2} + (X_{L}-X_{C}) ^{2} }[/tex], at resonance, Z = R i.e. the impedance is minimum
At resonance, there is maximum power and minimum impedance
Thew Quality Factor, [tex]Q = \frac{w_{0}L }{R} = \frac{1}{R} \sqrt{\frac{L}{C} }[/tex]
The impedance Z is always larger than the resistance R, note that it is not stated that this condition is at Resonance, that makes it correct.
[tex]Z = \sqrt{R^{2} + X^{2} }[/tex]