Respuesta :
Answer:
Explanation:
check attached files below for explanation..



Question:
With a discount rate of 11% solve for the net present value:
Answer:
A) NPV 18,721.81
B) NPV -17.565,93
C) NPV -3.451,97
Explanation:
a) we use the lump sum present value formula and then, compare against the cost.
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $161,000.00
time 3.00
rate 0.11000
[tex]\frac{161000}{(1 + 0.11)^{3} } = PV[/tex]
PV 117,721.8124
117,721.81 - 99,000 = 18,721.81
b) We solve forthe present value of the annuity of dividends and the lump sum of the sale price.
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $39,000.00
time 3.00
rate 0.11000
[tex]\frac{39000}{(1 + 0.11)^{3} } = PV[/tex]
PV 28,516.4639
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 3,240.00
time 3
rate 0.11
[tex]3240 \times \frac{1-(1+0.11)^{-3} }{0.11} = PV\\[/tex]
PV $7,917.6357
Net present value
28,516.43 + 7,917.64 - 54,000 = -17.565,93
C) We solve forthe present value of the annuity of dividends and the lump sum of the sale price.
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 1,500.00
time 3
rate 0.11
[tex]1500 \times \frac{1-(1+0.11)^{-3} }{0.11} = PV\\[/tex]
PV $3,665.5721
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $86,000.00
time 3.00
rate 0.11000
[tex]\frac{86000}{(1 + 0.11)^{3} } = PV[/tex]
PV 62,882.4588
62,882.46 + 3,665.57 - 70,000 = -3.451,97