Find the area os the rectangle TOUR

Answer:
The answer to your question is 80 units²
Step-by-step explanation:
Data
R = (-6, -6)
U = (6, -2)
O = (4, 4)
T = (-8, 0)
Process
1.- Find the distance between R and U, and the points U and O
dRU = [tex]\sqrt{6 + 6)^{2} + (-2 + 6)^{2}}[/tex]
dRU = [tex]\sqrt{12^{2} + 4^{2}}[/tex]
dRU = [tex]\sqrt{144 + 16}[/tex]
dRU = [tex]\sqrt{160}[/tex] = 12.65
dUO = [tex]\sqrt{(4 - 6)^{2} + (4 + 2)^{2}}[/tex]
dUO = [tex]\sqrt{(-2)^{2} + (6)^{2}}[/tex]
dUO = [tex]\sqrt{4 + 36}[/tex]
dUO = [tex]\sqrt{40}[/tex] = 6.32
2.- Find the Area
Area = base x height
-Substitution
Area = 12.65 x 6.32
- Result
Area = 80 units²