A solenoid having an inductance of 5.41 μH is connected in series with a 0.949 kΩ resistor. (a) If a 16.0 V battery is connected across the pair, how long will it take in seconds for the current through the resistor to reach 77.9% of its final value? (b) What is the current through the resistor at a time t = 1.00τL?

Respuesta :

Answer:

(A) [tex]9.14\times 10^{-9}sec[/tex]

(B) [tex]6.20\times 10^{-3}A[/tex]

Explanation:

We have given inductance [tex]L=5.41\mu H=5.41\times 10^{-6}H[/tex]

Resistance [tex]R=0.949kohm=0.949\times 10^3ohm[/tex]

Time constant of RL circuit is equal to [tex]\tau =\frac{L}{R}[/tex]

[tex]\tau =\frac{5.41\times 10^{-6}}{0.949\times 10^3}=5.70\times 10^{-9}sec[/tex]

Battery voltage e = 16 volt

(a) It is given current becomes 79.9% of its final value

Current in RL circuit is given by

[tex]i=i_0(1-e^{\frac{-t}{\tau }})[/tex]

According to question

[tex]0.799i_0=i_0(1-e^{\frac{-t}{\tau }})[/tex]

[tex]e^{\frac{-t}{\tau }}=0.201[/tex]

[tex]{\frac{-t}{\tau }}=ln0.201[/tex]

[tex]{\frac{-t}{5.7\times 10^{-9} }}=-1.6044[/tex]

[tex]t=9.14\times 10^{-9}sec[/tex]

(b) Current at [tex]t=\tau sec[/tex]

[tex]i=i_0(1-e^{\frac{-t}{\tau }})[/tex]

[tex]i=\frac{16}{0.949\times 10^3}(1-e^{\frac{-\tau }{\tau }})[/tex]

[tex]i=6.20\times 10^{-3}A[/tex]