contestada

Write equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum that has a wavelength of 698 nm and a peak electric field magnitude of 3.5 V/m. (Use the following as necessary: t and x. Assume that E is in volts per meter, B is in teslas, t is in seconds, and x is in meters. Do not include units in your answer. Assume that E

Respuesta :

yemmy

Answer:

Explanation:

General equation of the electromagnetic wave:

[tex]E(x, t)= E_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ][/tex]

where

[tex]\phi =[/tex] Phase angle, 0

c = speed of the electromagnetic wave, 3 × 10⁸

[tex]\lambda =[/tex] wavelength of electromagnetic wave, 698 × 10⁻⁹m

E₀ = 3.5V/m

Electric field equation

[tex]E(x, t)= 3.5sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6x-2.7\times 10^{15}t)][/tex]

Magnetic field Equation

[tex]B(x, t)= B_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ][/tex]

Where B₀= E₀/c

[tex]B_0 = \frac{E_0}{c} = \frac{3.5}{3\times10^8}=1.2 \times 10^{-8}T[/tex]

[tex]B(x, t)= 1.2\times10^{-8}sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6x-2.7\times 10^{15}t)][/tex]