Answer:
Step-by-step explanation:
Given Parameters
Mean, [tex]x[/tex] = 180
total samples, n = 20
Standard dev, [tex]\sigma[/tex] = 30
[tex]\alpha[/tex] = 1 - 0.95 = 0.05 at 95% confidence level
Df = n - 1 = 20 - 1 = 19
Critical Value, [tex]t_\alpha[/tex], is given by
[tex]t_{c}=t_{\alpha, df} = t_{0.05,19} = 1.729[/tex]
a).
Confidence Interval, [tex]\mu[/tex], is given by the formula
[tex]\mu = x +/- t_c \times \frac{s}{\sqrt{n} }[/tex]
[tex]\mu = 180 +/- 1.729 \times \frac{30}{\sqrt{20} }[/tex]
[tex]\mu = 180 +/-11.5985[/tex]
[tex]191.5985 > \mu > 168.4015[/tex]
b).
Critical Value, [tex]t_{\alpha/2}[/tex], is given by
[tex]t_{c}=t_{\alpha/2, df} = t_{0.05/2,19} = 2.093[/tex]
Confidence Interval, [tex]\mu[/tex], is given by
[tex]\mu = x +/- t_c \times \frac{s}{\sqrt{n} }[/tex]
[tex]\mu = 180 +/- 2.093 \times \frac{30}{\sqrt{20} }[/tex]
= 180 +/- 14.0403
= 165.9597 < [tex]\mu[/tex] < 194.0403