Answer:
90% confidence interval for the population proportion of US adults who follow baseball
( 0.1842 , 0.22880)
Step-by-step explanation:
Explanation:-
Given data the survey of 891 US adults who follow baseball in a recent year, 184 said that the Boston red sox would win the world series.
The sample proportion [tex]'p' = \frac{184}{891} = 0.20650[/tex]
q = 1-p = 1- 0.20650 =0.79350
Confidence intervals
90% confidence interval for the population proportion of US adults who follow baseball
[tex](p-Z_{\alpha } \sqrt{\frac{pq}{n} } , p + Z_{\alpha } \sqrt{\frac{pq}{n} } )[/tex]
The tabulated value Z₀.₉₀ = 1.645
[tex](0.20650-1.645\sqrt{\frac{0.20650X0.7935}{891} } , 0.20650 + 1.645\sqrt{\frac{0.20650X0.7935}{891} } )[/tex]
(0.20650 - 0.02230 , 0.20650+0.02230)
( 0.1842 , 0.22880)
Conclusion:-
90% confidence interval for the population proportion of US adults who follow baseball
( 0.1842 , 0.22880)