If the terminal ray of β lies in the fourth quadrant and sin (β) = -√3/3 determine cos(β) in simplest form.

Respuesta :

Answer:

[tex]cos(\beta)=\frac{\sqrt{6}}{3}}[/tex]

Step-by-step explanation:

we know that

If the terminal ray of β lies in the fourth quadrant

then

sin (β) is negative and cos (β) is positive

Remember the trigonometric identity

[tex]sin^2(\beta)+cos^2(\beta)=1[/tex]

we have

[tex]sin(\beta)=-\frac{\sqrt{3}}{3}[/tex]

substitute

[tex](-\frac{\sqrt{3}}{3})^2+cos^2(\beta)=1[/tex]

[tex]\frac{3}{9}+cos^2(\beta)=1[/tex]

[tex]cos^2(\beta)=1-\frac{3}{9}[/tex]

[tex]cos^2(\beta)=\frac{6}{9}[/tex]

apply root square both sides

[tex]cos(\beta)=\frac{\sqrt{6}}{3}}[/tex]