Respuesta :

Answer:

[tex]V = \frac{2L\sqrt{3}}{3} \pi}[/tex]

[tex]A = 4\pi + \sqrt{3L^{2} + 16}[/tex]

Step-by-step explanation:

Figure of cone is missing. See attachment

Given

Radius, R = 2m

Let L = KL=LM=KM

Required:

Volume, V and Surface Area, A

Calculating Volume

Volume is calculated using the following formula

[tex]V = \frac{1}{3} \pi R^{2} H[/tex]

Where R is the radius of the cone and H is the height

First, we need to determine the height of the cone

The height is represented by length OL

It is given that KL=LM=KM in triangle KLM

This means that this triangle is an equilateral triangle

where OM = OK = [tex]\frac{1}{2} KL[/tex]

OK = [tex]\frac{1}{2}L[/tex]

Applying pythagoras theorem in triangle LOM,

|LM|² =  |OL|² + |OM|²

By substitution

L² = H² + ( [tex]\frac{1}{2}L[/tex])²

H² = L² -  [tex]\frac{1}{4}L[/tex]²

H² = L² (1 -  [tex]\frac{1}{4}[/tex])

H² = L² [tex]\frac{3}{4}[/tex]

H² = [tex]\frac{3L^{2} }{4}[/tex]

Take square root of bot sides

[tex]H = \sqrt{\frac{3L^{2} }{4}}[/tex]

[tex]H = \frac{L\sqrt{3}}{2}[/tex]

Recall that [tex]V = \frac{1}{3} \pi R^{2} H[/tex]

[tex]V = \frac{1}{3} \pi 2^{2} * \frac{L\sqrt{3}}{2}[/tex]

[tex]V = \frac{1}{3} \pi * 4} * \frac{L\sqrt{3}}{2}[/tex]

[tex]V = \frac{1}{3} \pi} * {2L\sqrt{3}}[/tex]

[tex]V = \frac{2L\sqrt{3}}{3} \pi}[/tex]

in terms of [tex]\pi[/tex] an d L where L = KL = LM = KM

Calculating Surface Area

Surface Area is calculated using the following formula

[tex]H = \frac{L\sqrt{3}}{4}[/tex]

[tex]A=\pi r(r+\sqrt{h^{2} +r^{2} } )[/tex]

[tex]A=\pi * 2(2+\sqrt{((\frac{L\sqrt{3}}{2})^{2} +2^{2} } )[/tex])

[tex]A=\pi * 2(2+\sqrt{{\frac{3L^{2}}{4} } + 4 }[/tex] )

[tex]A=\pi * 2(2+\sqrt{{\frac{3L^{2}+16}{4} } })[/tex]

[tex]A=2\pi(2+\sqrt{{\frac{3L^{2}+16}{4} } })[/tex]

[tex]A = 2\pi (2 + \frac{\sqrt{3L^{2} + 16}}{\sqrt{4}} )[/tex]

[tex]A = 2\pi (2 + \frac{\sqrt{3L^{2} + 16}}{2} )[/tex]

[tex]A = 2\pi (2 + {\frac{1}{2} \sqrt{3L^{2} + 16})[/tex]

[tex]A = 4\pi + \sqrt{3L^{2} + 16}[/tex]

Ver imagen MrRoyal