Answer:
[tex]\alpha_{2} = \frac{5}{4}\cdot \alpha_{1}[/tex], for all [tex]\alpha_{1} \in \mathbb{R}[/tex]
Step-by-step explanation:
Vectors are parallel to each other if:
[tex]\vec u = \beta \cdot \vec v[/tex]
[tex](\alpha_{2}, 5) = (\beta\cdot \alpha_{1}, \beta \cdot 4)[/tex]
The value of [tex]\beta[/tex] is:
[tex]\beta = \frac{5}{4}[/tex]
Then, the following relationship is found:
[tex]\alpha_{2} = \frac{5}{4}\cdot \alpha_{1}[/tex], for all [tex]\alpha_{1} \in \mathbb{R}[/tex]