What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 3 × 10-4 mm (1.181 × 10-5 in.) and a crack length of 2.5 × 10-2 mm (0.9843 × 10-3 in.) when a tensile stress of 170 MPa (24660 psi) is applied?

Respuesta :

Answer:

2195 MPa

Explanation:

Given that:

Radius of curvature ([tex]\rho_t[/tex]) = 3 × 10⁻⁴ mm,

Crack length ([tex]l_c[/tex]) =  2.5 × 10⁻² mm,

Therefore the length of surface crack (a) = crack length / 2 = 2.5 × 10⁻² mm / 2 = 1.25 × 10⁻² mm,

Tensile stress ([tex]\sigma_0[/tex]) = 170 MPa = 170 × 10⁶ Pa

The magnitude of the maximum stress that exists at the tip of an internal

crack ([tex]\sigma_m[/tex]) is given by the equation:

[tex]\sigma_m=2\sigma_0(\sqrt{\frac{a}{\rho t} })=2* 170*10^6(\sqrt{\frac{1.25*10^{-2}}{3*10^{-4}} } )=2195*10^6Pa=2195MPa[/tex]

Therefore the maximum stress is 2195 MPa