Respuesta :

Answer:

[tex]Wavelength=\lambda=1\times 10^{-10}[/tex] m

Step-by-step explanation:

Given that the wavelengths for X-rays with frequency [tex]3\times 10^{18}[/tex]

To find the wavelengths for the given X-rays:

The distance between two peaks in a wave is called the wavelength.

The value of wavelength is equal to the wave velocity divided by the frequency.

That is written by

[tex]Wavelength=\lambda =\frac{v}{f}[/tex]

[tex]Wavelength =\frac{3\times 10^8}{3\times 10^{18}}[/tex]

[tex]=\frac{10^8}{10^{18}}[/tex]

[tex]=\frac{1}{10^{18}.10^{-8}}[/tex] (by using the property [tex]a^m=\frac{1}{a^{-m}}[/tex])

[tex]=\frac{1}{10^{18-8}}[/tex] (by using the property [tex]a^m.a^n=a^{m+n}[/tex])

[tex]=\frac{1}{10^{10}}[/tex]

[tex]=1\times 10^{-10}[/tex] m (by using the property [tex]\frac{1}{a^{m}}=a^{-m}[/tex])

∴ [tex]Wavelength=\lambda=1\times 10^{-10}[/tex] m

Answer:

a. 1 × 10^–10 m

Step-by-step explanation: