Respuesta :

Given:

Given that the triangle ABC is similar to triangle FGH.

We need to determine the value of x.

Value of x:

Since, the triangles are similar, then their sides are proportional.

Thus, we have;

[tex]\frac{AC}{FH}=\frac{AB}{GF}=\frac{BC}{GH}[/tex]

Let us consider the proportion [tex]\frac{AB}{GF}=\frac{BC}{GH}[/tex] to determine the value of x.

Substituting AB = 9 cm, GF = 13.5 cm, BC = 15 cm and GH = x, we get;

[tex]\frac{9}{13.5}=\frac{15}{x}[/tex]

Cross multiplying, we get;

[tex]9x=15 \times 13.5[/tex]

[tex]9x=202.5[/tex]

 [tex]x=22.5 \ cm[/tex]

Thus, the value of x is 22.5 cm

Hence, Option F is the correct answer.