The true absorbance for a 1.0 x 10 −5 M solution is 0.7526. If the percentage stray light for a spectrophotometer is 0.56%, calculate the percentage by which the apparent concentration deviates from the known concentration.

Respuesta :

Answer:

The percentage deviation is  [tex]\Delta M = 1.87[/tex]%

Explanation:

From the question we are told that  

     The concentration is of the solution is [tex]C = 1.0*10^{-5} M[/tex]

     The true absorbance A = 0.7526

      The percentage of transmittance due to stray light [tex]z = 0.56[/tex]% [tex]=\frac{0.56}{100} = 0.0056[/tex]

Generally Absorbance is mathematically represented as

           [tex]A = -log T[/tex]

Where T is  the percentage of true transmittance

    Substituting value  

          [tex]0.7526 = - log T[/tex]

              [tex]T = 10^{-0.7526}[/tex]

                  [tex]= 0.177[/tex]

                  [tex]= 17.7[/tex]%

The Apparent absorbance is mathematically represented

           [tex]A_p = -log (T +z)[/tex]

Substituting values

           [tex]A_p = -log(0.177 + 0.0056)[/tex]

                [tex]= -log(0.1826)[/tex]

               = 0.7385

The percentage by which apparent absorbance deviates from known absorbance is mathematically evaluated as

       [tex]\Delta A = \frac{A -A_p}{A} * \frac{100}{1}[/tex]

              [tex]= \frac{0.7526 - 0.7385}{0.7526} * \frac{100}{1}[/tex]

             [tex]\Delta A = 1.87[/tex]%  

Since Absorbance varies directly with concentration the percentage deviation of the apparent concentration from know concentration  is

              [tex]\Delta M = 1.87[/tex]%