At 5000 K and 1.000 atm, 83.00% of the oxygen molecules in a sample have dissociated to atomic oxygen. At what pressure will 95.0% of the molecules dissociate at this temperature

Respuesta :

Answer:

At [tex]P_{total} = 0.240\ atm[/tex]; 95.0% of the molecules will dissociate at this temperature

Explanation:

The chemical  reaction of this dissociation is:

[tex]O_2 \leftrightarrow 2O_g[/tex]

The ICE table is as follows:

                        [tex]O_2 \ \ \ \ \ \ \ \leftrightarrow \ \ \ \ \ \ \ \ 2O_g[/tex]

Initial               100                        0

Change            -83                      +166

Equilibrium          17                      166

The mole fractions of each  constituent is now calculated as:

[tex]Mole \ fraction \ of \ O(X_o) = \frac{166}{183}[/tex] = 0.9071

[tex]Mole \ fraction \ of \ O_2(X_o_2_}}) = \frac{17}{183}[/tex] = 0.0929

Given that the total pressure [tex]P_{total}[/tex] = 1.000 atm ; the partial pressure of each gas is calculated by using Raoult's Law.

[tex]Partial \ Pressure \ of \ O (P_o) = X_oP_{total}\\\\ = 0.9071 \ atm[/tex]

[tex]Partial \ Pressure \ of \ O_2 (P_o_2) = X_oP_{total}\\\\ = 0.0929 \ atm[/tex]

Now; we proceed to determine the equilibrium constant [tex]K_c[/tex]; which is illustrated as:

[tex]K_c = \frac{Po^2}{Po_2} \\ \\ K_c = \frac{(0.9072)^2}{0.0929} \\ \\ =8.86 \ atm[/tex]

Let assume that the partial pressure of [tex]O_2[/tex] be x ;&

the change in pressure of  [tex]O_2[/tex] be y ; then

we can write that the following as the changes in concentration of species :

                          [tex]O_2 \ \ \ \ \ \ \ \leftrightarrow \ \ \ \ \ \ \ \ 2O_g[/tex]

Initial                    x                         0

Change              -y                          +2 y

Equilibrium         x - y                    2 y

From above; we can rewrite our equilibrium constant as:

[tex]K_c = \frac{(2y)^2}{x-y} \\ \\ 8.86 = \frac{(2y)^2}{x-y} ----- equation (1)[/tex]

From the question; we are told that provided that 95% of the molecules dissociate at this temperature. Therefore, we have:

[tex]\frac{y}{x}*100 = 95[/tex]%   -------- equation (2)

Solving and equating equation 1 and 2 ;

x = 0.123 atm

y = 0.117 atm

Thus, the pressure required can be calculated as :

[tex]P_{total} = (x-y) +2y \\ \\ P_{total} = (0.123- 0.117)+ 2(0.123) \\ \\ \\ P_{total} = 0.240 \ atm[/tex]