The rectangle below has an area of x^2+8x+15x

2

+8x+15x, squared, plus, 8, x, plus, 15 square meters and a width of x+3x+3x, plus, 3 meters.

What expression represents the length of the rectangle?

Respuesta :

Answer:

The length of the rectangle is x+5.

Step-by-step explanation:

Given : The rectangle below has an area of [tex]x^2+8x+15[/tex] square meter and a width of  [tex]x+3[/tex] meter.

To find : What expression represents the length of the rectangle?

Solution :

The area of the rectangle is given by,

[tex]\text{Area}=\text{Length}\times \text{Breadth}[/tex]

[tex]\text{Area}=x^2+8x+15[/tex]

[tex]\text{Breadth}=x+3[/tex]

[tex]x^2+8x+15=\text{Length}\times(x+3)[/tex]

[tex]\text{Length}=\frac{x^2+8x+15}{x+3}[/tex]

[tex]\text{Length}=\frac{(x+5)(x+3)}{x+3}[/tex]

[tex]\text{Length}=x+5[/tex]

Therefore, the length of the rectangle is x+5.