Answer:
The length of the rectangle is x+5.
Step-by-step explanation:
Given : The rectangle below has an area of [tex]x^2+8x+15[/tex] square meter and a width of [tex]x+3[/tex] meter.
To find : What expression represents the length of the rectangle?
Solution :
The area of the rectangle is given by,
[tex]\text{Area}=\text{Length}\times \text{Breadth}[/tex]
[tex]\text{Area}=x^2+8x+15[/tex]
[tex]\text{Breadth}=x+3[/tex]
[tex]x^2+8x+15=\text{Length}\times(x+3)[/tex]
[tex]\text{Length}=\frac{x^2+8x+15}{x+3}[/tex]
[tex]\text{Length}=\frac{(x+5)(x+3)}{x+3}[/tex]
[tex]\text{Length}=x+5[/tex]
Therefore, the length of the rectangle is x+5.