An offset h must be introduced into a metal tube of 0.75-in. outer diameter and 0.08-in. wall thickness. Knowing that the maximum stress after the offset is introduced must not exceed 4 times the stress in the tube when it is straight, determine the largest offset that can be used

Respuesta :

Complete Question

The diagram for this question is shown on the first uploaded image  

Answer:

The largest offset that can be used is  [tex]h = 0.455 \ in[/tex]

Explanation:

From the question we are told that

   The diameter of the metal tube is  [tex]d_m = 0.75 \ in[/tex]

    The thickness of the wall is  [tex]D = 0.08 \ in[/tex]

Generally the inner diameter is mathematically evaluated as

           [tex]d_i = d_m -2D[/tex]

               [tex]= 0.75 - 2(0.08)[/tex]

               [tex]= 0.59 \ in[/tex]

Generally the tube's cross-sectional area can be evaluated as

         [tex]a = \frac{\pi}{4} (d_m^2 - d_i^2)[/tex]

             [tex]= \frac{\pi}{4} (0.75^2 - 0.59^2)[/tex]

              [tex]= 0.1684 \ in^2[/tex]

Generally the maximum stress of the metal is mathematically evaluated as

          [tex]\sigma = \frac{P}{A}[/tex]

              [tex]\sigma = \frac{P}{ 0.1684}[/tex]

The diagram showing when the stress is been applied is shown on the second uploaded image  

        Since the internal forces in the cross section are the same with the force P and the bending couple M then  

           [tex]M = P * h[/tex]

Where h is the offset

       The maximum stress becomes

                 [tex]\sigma_n = \frac{P}{A} + \frac{M r_m }{I}[/tex]

Where [tex]r_m[/tex] is the radius of the outer diameter  which is evaluated as

                 [tex]r_m = \frac{0.75}{2}[/tex]

                 [tex]r_m = 0.375 \ in[/tex]

and I is the moment of inertia which is evaluated as

           [tex]I = \frac{\pi}{64} (d_m^4 - d_i^4 )[/tex]

              [tex]= \frac{\pi}{64}(0.75^4 - 0.59^4)[/tex]

              [tex]= 0.009583 \ in^4[/tex]

So the maximum stress becomes  

                [tex]\sigma' = \frac{P}{0.1684} + \frac{Phr}{0.009583}[/tex]

Now the question made us to understand that the maximum stress when the offset was introduced must not exceed the 4 times the original stress

So

        [tex]\sigma ' = 4 \sigma[/tex]

=>    [tex]\frac{P}{0.1684} + \frac{Phr_m }{0.009583} = 4 [\frac{P}{0.1684} ][/tex]

  The P would cancel out  

            [tex]\frac{1}{0.1684} + \frac{h(0.375)}{0.009583} = \frac{4}{0.1684}[/tex]

           [tex]5.94 + 39.13h = 23.753[/tex]

             [tex]39.13h = 17. 813[/tex]

                      [tex]h = 0.455 \ in[/tex]

       

Ver imagen okpalawalter8
Ver imagen okpalawalter8