contestada

An interpenetrating primitive cubic structure like that of CsCl with anions in the corners has an edge length of 664 pm. If the ratio of the ionic radius of the cation to the ionic radius of the anion is 0.840, what is the ionic radius of the anion

Respuesta :

Answer:

the ionic radius of the anion [tex]r^- = 312.52 \ pm[/tex]

Explanation:

From the diagram shown below :

The anion [tex]Cl^-[/tex] is located at the corners

The cation [tex]Cs^+[/tex] is located at the body center

The Body diagonal length =  [tex]\sqrt{3 \ a }[/tex]

∴ [tex]2 \ r^+ \ + 2r^- \ = \sqrt{3 \ a} \\ \\ r^+ +r^- = \frac{\sqrt{3}}{2} a[/tex]

Given that :

[tex]\frac{r^+}{r^-} =0.84[/tex]   (i.e the  ratio of the ionic radius of the cation to the ionic radius of

                 the anion )

[tex]0.84r^- \ + r^- \ = \frac{\sqrt{3}}{2}a \\ \\ 1.84 r^- = \frac{3}{2}a \\ \\ r^- = \frac{\sqrt{3}}{2*1.84}a[/tex]

Also ; a =  664 pm

Then :

[tex]r^- = \frac{\sqrt{3} }{2*1.84}*664 \ pm\\ \\ r^- = 312.52 \ pm[/tex]

Therefore,  the ionic radius of the anion [tex]r^- = 312.52 \ pm[/tex]

Ver imagen ajeigbeibraheem

The ionic radius of the anion  [tex]r^-=312.52pm[/tex]

Primitive cubic structure:

The anion is placed on the corners and the cation  is placed on the frame center.

The Body diagonal length =  [tex]\sqrt{3a}[/tex]

[tex]2r^++2r^-=\sqrt{3a} \\\\r^++r^-=\sqrt{3}/2a }[/tex]

Given:

Ratio=  0.840

[tex]\frac{r^+}{r^-}=0.840[/tex]

[tex]0.84r^-+r^-=\sqrt{3}/2a \\\\1.84r^-=3/2a\\\\r^-=\sqrt{3}/2*1.84a[/tex]

Also ; a =  664 pm

Then : [tex]r^-[/tex] =312.52 pm

Therefore,  the ionic radius of the anion = 312.52 pm

Find more information about Cubic structure here:

brainly.com/question/7959646