A rectangular tank with a square​ base, an open​ top, and a volume of 6912ft cubed is to be constructed of sheet steel. Find the dimensions of the tank that has the minimum surface area.

Respuesta :

Answer:

The dimensions of the rectangular tank is 30.24 ft by  30.24 ft by 7.56 ft.

Step-by-step explanation:

Given that,

A rectangular tank  is to be constructed with a square base and a volume of 6912 ft³.

Let length of the one side of the base be x and the height of the tank be y.

Then, the volume of the tank is= area of the base × height

                                                    =(x²)×y

                                                    =x²y ft²

Then,

x²y = 6912

[tex]\Rightarrow y=\frac{6912}{x^2}[/tex]

The surface area of the tank is

= surface area of the sides + surface area of the base

=4(xy)+x²           [ surface area of each wall= length × width =xy]

=4xy+x²

A= 4xy + x²

Plug [tex]y=\frac{6912}{x^2}[/tex] in the above expression

[tex]A=4x\times \frac{6912}{x^2}+x^2[/tex]

[tex]\Rightarrow A=\frac{27648}{x}+x^2[/tex]

Differentiating with respect to x

[tex]A'=-\frac{27,648}{x^2}+x[/tex]

Again differentiating with respect to x

[tex]A''=-\frac{(-2)27648}{x^{2+1}}+1[/tex]

[tex]\Rightarrow A''=\frac{55,296}{x^3}+1[/tex]

For maximum or minimum, A'=0

[tex]-\frac{27,648}{x^2}+x=0[/tex]

[tex]\Rightarrow x=\frac{27,648}{x^2}[/tex]

[tex]\Rightarrow x^3={27,648}[/tex]

[tex]\Rightarrow x=\sqrt[3]{27,648}[/tex]

⇒x ≈ 30.24

Now

[tex]\Rightarrow A''|_{x=30.24}=\frac{55,296}{(30.24)^3}+1>0[/tex]

So, at x=30.24 ft the surface area minimum.

The length of one side of the base of the tank is = 30.24 ft

Then the height of the rectangular tank is

[tex]y=\frac{6912}{x^2}[/tex]

  [tex]=\frac{6912}{30.24^2}[/tex]

 =7.56 ft

The dimensions of the rectangular tank is 30.24 ft by  30.24 ft by 7.56 ft.