The current in a long solenoid of radius 5 cm and 17 turns/cm is varied with time at a rate of 5 A/s. A circular loop of wire of radius 7 cm and resistance 5 Ω surrounds the solenoid. Find the electrical current induced in the loop (in µA).

Respuesta :

Answer:

The current is  [tex]I =0.2mA[/tex]

Explanation:

From the question we are told that

   The first radius is [tex]R_1 = 5cm = \frac{5}{100} = 0.05cm[/tex]

    The number of turns is [tex]N = 17 \ turn/cm[/tex]

    The current rate is  [tex]\frac{dI}{dt} = 5 A/s[/tex]

    The second radius is  [tex]R_2 = 7cm = \frac{7}{100} = 0.07m[/tex]

     The resistance is [tex]r = 5 \Omega[/tex]

Generally the magnetic flux induced in the solenoid is mathematically represented as

      [tex]\O = B A[/tex]

 Where  is the magnetic field mathematically represented as

            [tex]B = N \mu_o I[/tex]

Where [tex]\mu_o[/tex] is the permeability of free space with a value of [tex]\mu_o = 4\pi *10^{-7} N/A^2[/tex]

     and A is the area mathematically represented as

             [tex]A = \pi (R_2 - R_1)^2[/tex]

So

         [tex]\O = N \mu I * \pi R^2[/tex]

            Substituting values

        [tex]\O = 17 * 4\pi *10^{-7} * \pi (7-5)^2I[/tex]

           [tex]\O = 2.68*10^{-4}I[/tex]

The induced emf is mathematically represented as

              [tex]\epsilon =- |\frac{d\O}{dt}|[/tex]

                  [tex]\epsilon = 2.68*10^{-4 } \frac{dI}{dt}[/tex]

substituting values

               [tex]\epsilon =2.68 *10^{-4} * 5[/tex]

                  [tex]=1.3 *10^{-3} V[/tex]

From Ohm law

      [tex]I = \frac{\epsilon }{r}[/tex]

Substituting values

     [tex]I = \frac{1.3*0^{-3}}{5}[/tex]

        [tex]I =0.2mA[/tex]