Respuesta :
Answer:
[tex]\eta_{th} = 30\,\%[/tex], [tex]\eta_{th,max} = 40\,\%[/tex], [tex]\Delta S = \frac{1}{3}\,\frac{kJ}{K}[/tex], The cycle is irreversible.
Explanation:
The real cycle efficiency is:
[tex]\eta_{th} = \frac{1000\,kJ-700\,kJ}{1000\,kJ} \times 100\,\%[/tex]
[tex]\eta_{th} = 30\,\%[/tex]
The theoretical cycle efficiency is:
[tex]\eta_{th,max} = \frac{500\,K-300\,K}{500\,K} \times 100\,\%[/tex]
[tex]\eta_{th,max} = 40\,\%[/tex]
The reversible and real versions of the power cycle are described by the Clausius Inequalty:
Reversible Unit
[tex]\frac{1000\,kJ - 600kJ}{300\,K}= 0[/tex]
Real Unit
[tex]\Delta S = \frac{1000\,kJ-600\,kJ}{300\,K} -\frac{1000\,kJ-700\,kJ}{300\,K}[/tex]
[tex]\Delta S = \frac{1}{3}\,\frac{kJ}{K}[/tex]
The cycle is irreversible.
The cycle efficiency using clausius inequality is;
σ_cycle = 0.333 kJ/kg and is internally irreversible
- For the cycle, we know that efficiency is;
η = 1 - Q_c/Q_h
Thus;
Q_c = (1 - η)Q_h
- Now, the cycle efficiency is derived from the integral;
σ_cycle = -∫(dQ/dt)ₐ
Thus; σ_cycle = -[(Q_h/T_h) - (Q_c/T_c)]
We are given;
Q_h = 1000 kJ
T_h = 500 k
T_c = 300 k
Q_c = 700 kJ
- Thus;
σ_cycle = -[(1000/500) - (700/300)]
σ_cycle = -(2 - 2.333)
σ_cycle = 0.333 kJ/kg
Since σ_cycle > 0, then the cycle is internally irreversible
Read more about cycle efficiency at; https://brainly.com/question/16014998