A solution is prepared by adding 0.10 mole of Ni(NH3)6Cl2 to 0.50 L of 3.0 M NH3. Calculate [Ni(NH3)62 ] and [Ni2 ] in this solution. Koverall for Ni(NH3)62 is 5.5 x 108. That is, 5.5 x 108

Respuesta :

Answer:

[tex][Ni^{2+}]= 2.327*10^{-8} M[/tex]

[tex][Ni(NH_3)_6]^{2+} _{(aq)}]= 0.3 M[/tex]  

Explanation:

 From the question we are told that

      The number of moles of [tex]Ni(NH_3)_6Cl_2[/tex] is [tex]n = 0.10 \ moles[/tex]

       The volume  of [tex]NH_3[/tex] is = [tex]V = 0.50L[/tex]

       The concentration of [tex]NH_3[/tex] [tex]C = 3.0M[/tex]

     The [tex]k_{overall}[/tex] for  [tex][Ni(NH_3) _6^{2+}][/tex] is [tex]k_{overall} = 5.5*10^{8}[/tex]

The number of moles of [tex]NH_3[/tex] is mathematically evaluated as

        [tex]No\ of mole = concentration \ * \ volume[/tex]

substituting values

       [tex]Moles = 0.50* 3.0[/tex]

                  [tex]=1.5 \ moles[/tex]

  The equation for this reaction is  

    [tex]Ni^{2+}_{(aq)} + 6NH_3_{(aq)}[/tex]   ⇄     [tex][Ni(NH_3)_6]^{2+} _{(aq)}[/tex]

From this equation we can mathematically evaluate the limiting reactant as

For   [tex]Ni^{2+}[/tex]

                  [tex]0.10moles [Ni ^{2+}] * \frac{6moles NH_3}{1 mole [N_i^{2+}]}[/tex]

                            [tex]= 0.6 moles [Ni^{2+}][/tex]

For   [tex]NH_3[/tex]

                                 [tex]1.5 moles [NH_3] * \frac{6moles NH_3}{1 mole [N_i^{2+}]}[/tex]

                            [tex]= 9 moles [NH_3][/tex]

    Hence the Limiting reactant is  [tex]Ni^{2+}[/tex]

At the initial the number of moles of  [tex][Ni(NH_3)_6]^{2+} _{(aq)}[/tex] produced is mathematically evaluated as

           [tex]0.10 [Ni^{2+}] *\frac{1 moles [Ni(NH_3)_6]^{2+}}{1 mol [Ni^{2+}]}[/tex]

                          [tex]= 0.10 \ moles[/tex]

The remaining amount of [tex]NH_3[/tex] is  [tex]1.5 - 0.6 = 0.9 \ moles[/tex]

        Now the reaction is complete

The number of moles of  [tex]Ni^{2+}[/tex] = 0 moles  

 For this kind of reaction after the complex solution(which is at equilibrium) has been formed they disassociate  again ( which is also at equilibrium )

   Let the number of moles of  [tex]Ni^{2+}[/tex]  after disassociation be  z

    The the number of moles of [tex]NH_3[/tex] after disassociation be   0.9 + 6z

The 6  is from the reaction equation

    The the number of moles of [tex][Ni(NH_3)_6]^{2+} _{(aq)}[/tex]  after disassociation be [tex]0.10 -z[/tex]

Now the equilibrium constant for this reaction is

                [tex]K_{overall} = \frac{[Ni (NH_3) _6]^{2+}}{[Ni^{2+} [NH_3] ^6]}[/tex]

The powers of these concentration is  are their moles  

               substituting value

                 [tex]5.5*10^{8} = \frac{0.10 - z}{[z] [0.9 + 6z]^6}[/tex]

Since the back  reaction is  very little so we can neglecting subtracting it from the moles of  [tex][Ni(NH_3)_6]^{2+} _{(aq)}[/tex]  and  adding  it to the  number of moles of  [tex]NH_3[/tex]

Because it won't affect the value of z obtained  

                 [tex]5.5*10^{8} = \frac{0.10}{[z] [0.5]^6}[/tex]

                            [tex]z = \frac{0.10}{5.5*10^8 * (0.9)}[/tex]

                                [tex]= 1.16*10^{-8} \ mol[/tex]

So the number of moles  of  [tex]Ni^{2+}[/tex]   at equilibrium is  [tex]= 1.16*10^{-8} \ mol[/tex]

   The  concentration of  [tex]Ni^{2+}[/tex] is mathematically represented as

                            [tex]concentration = \frac{mole}{volume}[/tex]

                                                    [tex]= \frac{1.1636*10^{-8}}{0.50}[/tex]

                                                    [tex][Ni^{2+}]= 2.327*10^{-8} M[/tex]

The moles of  [tex][Ni(NH_3)_6]^{2+} _{(aq)}[/tex] is  =   [tex]0.10 - 2.327*10^{-8}[/tex]

                                                       [tex]= 0.10 \ moles[/tex]

The  concentration of  [tex][Ni(NH_3)_6]^{2+} _{(aq)}[/tex] is mathematically represented as

                            [tex]concentration = \frac{mole}{volume}[/tex]

                                                    [tex]= \frac{0.10}{0.50}[/tex]

                                                    [tex][Ni(NH_3)_6]^{2+} _{(aq)}]= 0.3 M[/tex]