Respuesta :
Answer:
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex] (1)
Or equivalently:
[tex]\bar X \pm ME[/tex]
For this case we have the interval given (3.9, 7.7) and we want to find the margin of error. Using the property of symmetry for a confidence interval we can estimate the margin of error with this formula:
[tex]ME= \frac{Upper -Lower}{2}= \frac{7.7-3.9}{2}= 1.9[/tex]
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
[tex]\bar X[/tex] represent the sample mean for the sample
[tex]\mu[/tex] population mean (variable of interest)
Solution to the problem
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex] (1)
Or equivalently:
[tex]\bar X \pm ME[/tex]
For this case we have the interval given (3.9, 7.7) and we want to find the margin of error. Using the property of symmetry for a confidence interval we can estimate the margin of error with this formula:
[tex]ME= \frac{Upper -Lower}{2}= \frac{7.7-3.9}{2}= 1.9[/tex]