Answer:
[tex]7.55\times 10^{-7} m[/tex]
Explanation:
We are given that
d=0.23 mm=[tex]0.23\times 10^{-3} m[/tex]
[tex]1mm=10^{-3} m[/tex]
Screen is placed from the slits at distance ,L=4.75 m
The bright interference fringes on the screen are separated by 1.56 cm.
[tex]\Delta y=1.56 cm=1.56\times 10^{-2} m[/tex]
1 m=100 cm
We have to find the wavelength of laser light.
We know that
[tex]\Delta y=\frac{\lambda L}{d}[/tex]
Substitute the values
[tex]1.56\times 10^{-2}=\frac{\lambda\times 4.75}{0.23\times 10^{-3}}[/tex]
[tex]\lambda=\frac{1.56\times 10^{-2}\times 0.23\times 10^{-3}}{4.75}[/tex]
[tex]\lambda=7.55\times 10^{-7} m[/tex]