A laser beam is incident on two slits with a separation of 0.230 mm, and a screen is placed 4.75 m from the slits. If the bright interference fringes on the screen are separated by 1.56 cm, what is the wavelength of the laser light

Respuesta :

Answer:

[tex]7.55\times 10^{-7} m[/tex]

Explanation:

We are given that

d=0.23 mm=[tex]0.23\times 10^{-3} m[/tex]

[tex]1mm=10^{-3} m[/tex]

Screen is placed  from the slits at distance ,L=4.75 m

The bright interference fringes on the screen are separated  by 1.56 cm.

[tex]\Delta y=1.56 cm=1.56\times 10^{-2} m[/tex]

1 m=100 cm

We have to find the wavelength of laser light.

We know that

[tex]\Delta y=\frac{\lambda L}{d}[/tex]

Substitute the values

[tex]1.56\times 10^{-2}=\frac{\lambda\times 4.75}{0.23\times 10^{-3}}[/tex]

[tex]\lambda=\frac{1.56\times 10^{-2}\times 0.23\times 10^{-3}}{4.75}[/tex]

[tex]\lambda=7.55\times 10^{-7} m[/tex]