Solve the logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. log Subscript 5 Baseline left parenthesis x plus 22 right parenthesis minus log Subscript 5 Baseline left parenthesis x minus 2 right parenthesis equals 2

Respuesta :

Answer:

Value of x = 3

Step-by-step explanation:

Given a logarithmic function:

⇒ [tex]log_5\ (x+22) - log_5\ (x-2) =2[/tex]

⇒ [tex]log_5\ (x+22) =2+log_5\ (x-2)[/tex]  

    ...subtracting log_5(x-2) both sides.        

⇒ [tex]log_5\ (x+22) =log_5\ (5^2)+log_5\ (x-2)[/tex]

   Using log of the base  [tex]log_5(5) = 1[/tex]   and [tex]x=log_y(y^x)[/tex] so [tex]2=log_5(5^2)[/tex]

⇒ [tex]log_5\ (x+22) =log_5\ (25)+log_5\ (x-2)[/tex]

   Applying log product rule ... [tex]log_x(a)+log_x(b)=log_x(ab)[/tex]

⇒ [tex]log_5\ (x+22) =log_5\ 25(x-2)[/tex]

⇒ [tex](x+22) =25(x-2)[/tex]

⇒ [tex]x+22=25x-50[/tex]

⇒ [tex]25x-50-x-22=0[/tex]

⇒ [tex]25x-x-50-22=0[/tex]

⇒ [tex]24x=72[/tex]

⇒ [tex]x=\frac{72}{24}[/tex]

⇒ [tex]x=3[/tex]

The value of x in the logarithmic equation, = 3