Respuesta :

Answer:

The length of the arc is 2.25 units.

Step-by-step explanation:

The circumference of a circle is [tex]2\pi r[/tex], where r is radius of the circle.

Total angle of a circle in degree is 360°.

Length of central angle formula

[tex]\textrm{Arc length}=\frac{2\pi r}{360^\circ}\times \textrm{central angle degree}[/tex]

[tex]\Rightarrow \textrm{Arc length}=\frac{\textrm{circumference}}{360^\circ}\times \textrm{central angle degree}[/tex]

Given that,

A circle has a circumference of 5 units.An arc in the circle has a central angle of 162°.

Then,

[tex]\textrm{Arc length}=\frac{\textrm{circumference}}{360^\circ}\times \textrm{central angle degree}[/tex]

[tex]\textrm{Arc length}=\frac{5}{360^\circ}\times162^\circ[/tex]

                 [tex]=\frac{810}{360}[/tex]

                 [tex]=\frac{9}{4}[/tex]

                 =2.25 units.

The length of the arc is 2.25 units.

Answer:

14.14 units

Step-by-step explanation:

Klan Academy - i checked and it was correct.