Respuesta :
Answer:
The length of the arc is 2.25 units.
Step-by-step explanation:
The circumference of a circle is [tex]2\pi r[/tex], where r is radius of the circle.
Total angle of a circle in degree is 360°.
Length of central angle formula
[tex]\textrm{Arc length}=\frac{2\pi r}{360^\circ}\times \textrm{central angle degree}[/tex]
[tex]\Rightarrow \textrm{Arc length}=\frac{\textrm{circumference}}{360^\circ}\times \textrm{central angle degree}[/tex]
Given that,
A circle has a circumference of 5 units.An arc in the circle has a central angle of 162°.
Then,
[tex]\textrm{Arc length}=\frac{\textrm{circumference}}{360^\circ}\times \textrm{central angle degree}[/tex]
[tex]\textrm{Arc length}=\frac{5}{360^\circ}\times162^\circ[/tex]
[tex]=\frac{810}{360}[/tex]
[tex]=\frac{9}{4}[/tex]
=2.25 units.
The length of the arc is 2.25 units.
Answer:
14.14 units
Step-by-step explanation:
Klan Academy - i checked and it was correct.