Radium decays exponentially; it has a half-life of 1,600 years. Find a formula for the amount, q(t), remaining from 70 mg of pure radium after t years. q(t) = After how many years will there be 10 mg left? (Round your answer to the nearest year.) yr

Respuesta :

Answer:

4492 years  (to the nearest year)

Step-by-step explanation:

The quantity of radium left after a time t can be modeled using the equation below:

[tex]Q(t)=Q_0(\frac{1}{2})^{\frac{t}{t_{1/2}} }\\Q_0 =$Initial Amount$\\t_{1/2}=$Half-Life of the Substance$\\t=$Time elapsed$[/tex]

Given that:

[tex]Q_0 =70mg\\t_{1/2}=1600 years[/tex]

The amount of radium left after a t years is:

[tex]Q(t)=70(\frac{1}{2})^{\frac{t}{1600} }[/tex]

If the quantity left is 10 mg, then:

[tex]10=70(\frac{1}{2})^{\frac{t}{1600} }\\\frac{10}{70} =(\frac{1}{2})^{\frac{t}{1600} }\\[/tex]

Changing to logarithm form

[tex]Log_{0.5}\frac{10}{70}=\frac{t}{1600} \\\frac{Log(10/70)}{Log 0.5} =\frac{t}{1600}\\t=\frac{Log(10/70)}{Log 0.5} X 1600\\=4491.8 \approx 4492 \:years\text{ (to the nearest year)}[/tex]

In 4492 years, 10 mg of Radium will be left.

a). Formula for the final amount → [tex]Q(t)=70(0.99956687)^t[/tex]

b). 10 mg will be left after 4492 years.

Exponential decay:

  •   Exponential decay of a radioactive element is given by the

           expression,

           [tex]Q(t)=Q_0(1-r)^t[/tex]

           Here, [tex]Q(t)=[/tex] Final amount

           [tex]Q_0=[/tex] Initial amount

            [tex]r=[/tex] Rate of decay

            [tex]t=[/tex] Duration of decay

Given in the question,

  •   Half life of Radium = 1600 years
  •   Initial amount = 70 mg

a). For [tex]Q(t)=\frac{Q_0}{2}[/tex],

    [tex]\frac{Q_0}{2}=Q_0(1-r)^{1600}[/tex]

    [tex]0.5=(1-r)^{1600}[/tex]

    0.99956687 = 1 - r

    r = 0.000433123

    r ≈ 0.0433123%

    Therefore, exponential function representing the radioactive decay will be,

    [tex]Q(t)=70(0.9995668)^t[/tex]

b). For [tex]Q(t)=10\text{ mg}[/tex],

    [tex]10=70(0.9995668)^t[/tex]

    [tex](0.9995668)^t=\frac{1}{7}[/tex]

    [tex]\text{log}(0.9995668)^t=\text{log}(\frac{1}{7})[/tex]

    [tex]t.\text{log}(0.9995668)=-\text{log}(7)[/tex]

     t ≈ 4492 years

  Therefore, a). Formula for the final amount → [tex]Q(t)=70(0.99956687)^t[/tex]

                     b). 10 mg will be left after 4492 years.

Learn more about the exponential decay here,

https://brainly.com/question/3499464?referrer=searchResults