Answer:
[tex]\sin 253.740^{\textdegree} = -\frac{24}{25} = -0.960[/tex]
[tex]\cos 253.740^{\textdegree} = -\frac{7}{25} = -0.280[/tex]
[tex]\tan 253.340^{\textdegree} = \frac{24}{7} = 3.429[/tex]
Step-by-step explanation:
The point is in the 3rd Quadrant of the Cartesian Plane. Therefore, angle must be between 180° and 270° with respect to the horizontal.
The angle is:
[tex]\theta = 180^{\textdegree}+\tan^{-1}\left(\frac{24}{7} \right)[/tex]
[tex]\theta \approx 253.740^{\textdegree}[/tex]
The values of the trigonometrical functions are computed below:
[tex]\sin 253.740^{\textdegree} = -\frac{24}{25} = -0.960[/tex]
[tex]\cos 253.740^{\textdegree} = -\frac{7}{25} = -0.280[/tex]
[tex]\tan 253.340^{\textdegree} = \frac{24}{7} = 3.429[/tex]