What is the missing constant term in the perfect square that starts with
x2−16xx^2-16x
x
2
−16x
x, squared, minus, 16, x
?

Respuesta :

Answer:

The missing constant is 64.

Step-by-step explanation:

The general form of a perfect square for the difference between two numbers is:

[tex](a-b)^{2}=a^{2}+2a(-b)+b^{2}[/tex]

The expression provided is:

[tex]x^{2}-16x+\_\_[/tex]

Let the missing constant be denoted as a.

Compute the missing value as follows:

                      [tex](x-a)^{2}=x^{2}-16x+a^{2}\\[/tex]

[tex]x^{2}+(2\times x\times -a)+a^{2}=x^{2}-16x+a^{2}[/tex]

                           [tex]-2ax=-16x\\[/tex]

                                [tex]2a=16[/tex]

                                 [tex]a=8[/tex]

The complete expression is:

[tex]x^{2}-16x+\_\_=x^{2}-16x+64[/tex]

Thus, the missing constant is 64.

Answer:

The answer is 64

Step-by-step explanation:

I got it right on khan academy;)