Respuesta :

Given:

Circle C and circle R are similar.

The length of arc AB is [tex]s = \frac{22 \pi}{9}[/tex]

The radius of circle C (AC) = 4 unit

The radius of circle R (QR) =6 unit

To find the length of arc QP.

Formula

The relation between s,  r and [tex]\theta[/tex] is

[tex]arclength = 2\pi r \frac{\theta}{360}[/tex]

where,

s be the length of the arc

r be the radius

[tex]\theta[/tex] be the angle.

Now,

For circle C

Taking r = 4

According to the problem,

[tex]2 \pi r \frac{\theta}{360} = \frac{22 \pi}{9}[/tex]

or, [tex]2r \frac{\theta}{360} = \frac{22}{9}[/tex] [ eliminating [tex]\theta[/tex] from both side]

or, [tex]\theta = \frac{(22)(360)}{(9)(2)(4)}[/tex]

or, [tex]\theta = 110^\circ[/tex]

Again,

For circle R

Taking, r = 6 and [tex]\theta = 110^\circ[/tex] we get,

The length of arc QP is

[tex]arc length = 2\pi (6)(\frac{110}{360} )[/tex]

or, [tex]arclength = \frac{11 \pi}{3}[/tex]

Hence,

The length of QP is [tex]\frac{11 \pi}{3}[/tex]. Option C.