Answer:
[tex](12.33 ; 15.67)[/tex]
Step-by-step explanation:
Givens
To find a confidence interval we have to use the formula
[tex]\mu (+-)z\times \frac{\sigma}{\sqrt{n} }[/tex]
Where [tex]\mu[/tex] is the mean, [tex]z[/tex] is the z-value for a 95% confidence level, [tex]\sigma[/tex] is the standard deviation and [tex]n[/tex] is the sample size.
The z-value for 95% confidence is 1.96.
Replacing all values, we have
[tex]14(+-)1.96\times \frac{2.70}{\sqrt{10} }=14(+-)1.96 \times \frac{2.70}{3.16}=14(+-)1.67[/tex]
Which means the confidence interval is
[tex](14-1.67 ;14+1.67)\\(12.33 ; 15.67)[/tex]