Respuesta :

Answer:

y = [tex]\frac{2}{3}[/tex] x - [tex]\frac{7}{3}[/tex]

Step-by-step explanation:

Given

  • x=-3t + 4

So we will set up a set values of t to have x

t = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

<=> x = {4, 1, -2, -5, -8, -11, -14, -17, -20, -23, -26}

  • y= 2t-5

So we will set up a set values of t to have y

t = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

<=.> y = {-5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15}

At the end, we have the table of values of x and y as following:

x = {4, 1, -2, -5, -8, -11, -14, -17, -20, -23, -26}

y =  {-5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15}

Let find the slope of the linear equation:

m = [tex]\frac{y2-y1}{x2-x1}[/tex]  

<=> m = [tex]\frac{-3-(-5)}{1-4}[/tex] = [tex]-\frac{2}{3}[/tex]

and the standard form of a linear equation is:

y= mx + b

In this situation, y = [tex]\frac{2}{3}[/tex] x + b (1)

Because the line goes through point (4, -5), so we substitute it into (1) to find b.

<=> -5 =  [tex]-\frac{2}{3}[/tex]*4 + b

<=> b = -[tex]\frac{23}{3}[/tex]

<=> y = [tex]\frac{2}{3}[/tex] x - [tex]\frac{7}{3}[/tex]

Please have a look at the attach photo.

Hope it will find you well.

Ver imagen thaovtp1407