A nine-cylinder radial aircraft engine has a bore of 5.5 inches and a stroke of 5.5 inches and runs at 3500 rpm. Assuming that the brake horsepower of the engine is measured at 600 hp, calculate the brake mean effective pressure (BMEP) the indicated mean effective pressure (IMEP) (hint: assume an appropriate value for ηmech). Farokhi, Saeed. Aircraft Propulsion (Kindle Locations 12000-12003). Wiley. Kindle Edition.

Respuesta :

Answer:

BMEP = 3.98154 bar

IMEP = 4.9769 bar

Explanation:

Note:BMEP means Brake Mean Indicated Effective Pressure = 3.98154 bar

IMEP means Indicated mean of Effective Pressure =4.9769 bar.

Please go through the attached files for the step by step solution.

Ver imagen Amakamerem
Ver imagen Amakamerem
Ver imagen Amakamerem

Answer:

The  brake mean effective pressure is   [tex]BMEP = 398154.542Pa[/tex]

The  indicated mean effective pressure is  [tex]IMEP = 338431.36 Pa[/tex]

Explanation:

From the question we are told that

      The number of cylinder is  [tex]n = 9[/tex]

       The bore diameter  is [tex]b = 5.5 \ inches = \frac{5.5 * 2.54}{100} = 0.1397 \ m[/tex]

       The stroke is [tex]s = 5.5 \ inches = \frac{5.5 * 2.54}{ 100} = 0.1397\ m[/tex]

        The angular speed is  [tex]w = 3500 rpm[/tex]

       The  break horsepower of engine is  [tex]E = 600hp = 600 * 746 = 447.600 \ kW[/tex]

Let assume the mechanical effectiveness [tex]\eta mech[/tex] = 85%

The mechanical effectiveness of the engine is mathematically represented

           [tex]\eta mech = \frac{[BMEP]}{[IMEP]} *100[/tex]

the brake mean effective pressure (BMEP) is mathematically represented as

                  [tex]B MEP =[ \frac{60 *10^{3} E }{s * a * n * w} ][/tex]

where a is the area of the engine piston which is  mathematically as

                    [tex]a = \frac{\pi}{4} (b)^2[/tex]

 Substituting values

                    [tex]a = \frac{\pi}{4} * (0.1397^2)[/tex]

                       [tex]= 0.01532 \ m^2[/tex]

Substituting values into the equation for BMEP

             [tex]BMEP = \frac{60 *10^{3} * 447.600}{0.1397 * 0.01532 * 3500 * 9}[/tex]

                          [tex]BMEP = 398154.542Pa[/tex]

From the equation of [tex]\eta mech[/tex]

  We have that

              [tex]85 = \frac{[398154. 542]}{[IMEP]} *100[/tex]

              [tex]0.85 = \frac{[398154. 542]}{[IMEP]}[/tex]

             [tex]IMEP = 398154.52 * 0.85[/tex]

                         [tex]IMEP = 338431.36 Pa[/tex]