A sphere of radius 0.081029 m is made of aluminum. It is submerged in flowing water with a temperature of 25 °C that results in a heat transfer coefficient of 103.067 W/m2•K. Its surface temperature is 124.978 °C at 0 s. What will its surface temperature be at 767.276 s? (Answer in °C.)

Respuesta :

Answer:

its surface temperature = 54.84 ° C

Explanation:

The density of aluminium [tex](\rho)[/tex] = 2700 kg/m ³

Heat capacity [tex]( c_p)[/tex] = 897 J/Kg.K

radius of the sphere (r) = 0.081029 m

[tex]T \infty[/tex] = 25 °C

[tex]T_i[/tex] = 124.978  °C

time (t) = 767.276 s

Using the formula :

[tex]\frac{T-T_{ \infty} }{T_i - T_{\infty}}= e^{-\frac{hA}{\rho V c_p}}*t[/tex]

where.

[tex]\frac{V}{A}= \frac{r}{3}[/tex]

Replacing our values ;we have:

[tex]\frac{T-25 }{124.978 - 25}= e^{-\frac{-103.067*3}{2700*897*0.081029}}*767.276[/tex]

[tex]\frac{T-25 }{124.978 - 25}= e^{{-0.001576}*767.276[/tex]

[tex]\frac{T-25 }{124.978 - 25}= e^{-1.209}[/tex]

[tex]\frac{T-25 }{99.978}= 0.2985[/tex]

[tex]{T-25 }= 0.2985*{99.978}[/tex]

[tex]{T-25 }= 29.843433[/tex]

[tex]{T= 29.843433+25 }[/tex]

[tex]{T= 54.843433[/tex]

T ≅ 54.84 ° C

Therefore, its surface temperature = 54.84 ° C