Answer:
(a) [tex]530W/m^2[/tex]
(b) 631.85 V/m
(c) [tex]210\times 10^{-8}T[/tex]
Explanation:
We have given power P = 90 watt
Diameter of the sphere d = 5.2 cm
So radius r = 2.6 cm = 0.026 m
(a) Intensity is equal to [tex]I=\frac{P}{A}=\frac{P}{4\pi r^2}[/tex]
So [tex]I=\frac{0.05\times 90}{4\times 3.14\times 0.026^2}=530W/m^2[/tex]
(b) Energy density is equal to
[tex]u=\frac{1}{2}\epsilon _0E^2[/tex]
It is also known that [tex]u=\frac{I}{c}[/tex]
[tex]\frac{I}{c}=\frac{1}{2}\epsilon _0E^2[/tex]
[tex]E=\sqrt{\frac{2I}{\epsilon _0C}}[/tex]
[tex]E=\sqrt{\frac{2\times 530}{8.85\times 10^{-12}\times 3\times 10^8}}=631.85V/m[/tex]
(c) Amplitude of magnetic field
[tex]B=\frac{E}{c}[/tex]
[tex]B=\frac{631.85}{3\times 10^8}=210\times 10^{-8}T[/tex]