Find a unit vector in the direction of the vector left bracket Start 3 By 1 Matrix 1st Row 1st Column negative 8 2nd Row 1st Column 7 3rd Row 1st Column negative 2 EndMatrix right bracket

−8
7
−2
.

A unit vector in the direction of the given vector is left bracket Start 3 By 1 Matrix 1st Row 1st Column nothing 2nd Row 1st Column nothing 3rd Row 1st Column nothing EndMatrix right bracket

?
?
?
.

​(Type exact​ answers, using radicals as​ needed.)

Respuesta :

Answer:

[tex]\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right][/tex]

Step-by-step explanation:

We are required to find a unit vector in the direction of:

[tex]\left[\begin{array}{c}-8\\7\\2\end{array}\right][/tex]

Unit Vector, [tex]\hat{a}=\dfrac{\overrightarrow{a}}{|\overrightarrow{a}|}[/tex]

The Modulus of [tex]\overrightarrow{a}[/tex] =[tex]\sqrt{(-8)^2+7^2+(-2)^2}=\sqrt{117}[/tex]

Therefore, the unit vector of the matrix is given as:

[tex]\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right][/tex]