Answer:
The final angular speed will be [tex]\omega _f=200rad/sec[/tex]
Explanation:
We have given torque [tex]\tau =24.5N-m[/tex]
Moment of inertia is given [tex]I=0.130kgm^2[/tex]
Angular speed [tex]\Theta =16.9revolutions=16.9\times2\pi =106.132rad[/tex]
Initial angular velocity [tex]\omega _i=0rad/sec[/tex]
Work done is equal to
[tex]w=\frac{1}{2}I\omega _f^2-\frac{1}{2}I\omega _i^2[/tex]
[tex]\tau (\Delta \Theta )=\frac{1}{2}I\omega _f^2[/tex]
[tex]24.5\times 106.132=\frac{1}{2}\times 0.130\times \omega _f^2[/tex]
[tex]\omega _f=200rad/sec[/tex]
So the final angular speed will be [tex]\omega _f=200rad/sec[/tex]