Consider the following function. f(x) = 2/x, a = 1, n = 2, 0.6 ≤ x ≤ 1.4 (a) Approximate f by a Taylor polynomial with degree n at the number a. T2(x) = 2−2(x−1)+(x−1)2 (b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) ≈ Tn(x) when x lies in the given interval. (Round your answer to eight decimal places.) |R2(x)| ≤

Respuesta :

Answer:

Step-by-step explanation: please go through the attached file for detailed explanation .

Ver imagen Amakamerem

The Taylor series of f(x) of degree 2 is given by [tex]\rm f(x) = x^2-3x+3[/tex] and according to the remainder estimation theorem [tex]\rm |R_2(x)| \leq 7.716049383(|x-1|)^{3}[/tex].

Given :

Consider the following function--  f(x) = 2/x, a = 1, n = 2, 0.6 ≤ x ≤ 1.4.

a) The Taylor series is given by:

[tex]\rm f(x) = f(a)+\dfrac{f'(a)}{1!}(x-a)+\dfrac{f"(a)}{2!}(x-a)^2+\dfrac{f'''(a)}{3!}(x-a)^3+....\\[/tex]

Now, at (a = 1) and (n = 2) the above series becomes:

[tex]\rm f(x) = 1-\dfrac{1}{a^2}}(x-a)+\dfrac{1}{2!}\times \dfrac{2}{a^3}\times (x-a)^2[/tex]

Substitute (a = 1) in the above series.

[tex]\rm f(x) = 1-\dfrac{1}{1^2}}(x-1)+\dfrac{1}{2!}\times \dfrac{2}{1^3}\times (x-1)^2[/tex]

[tex]\rm f(x) = 1-(x-1)+(x-1)^2[/tex]

[tex]\rm f(x) = x^2+1-2x-x+1+1[/tex]

[tex]\rm f(x) = x^2-3x+3[/tex]

b) According to remainder estimation theorem:

[tex]\rm |f^{n+1}(x)|\leq m[/tex]

[tex]\rm |R_n(x)| \leq \dfrac{m(|x-a|)^{n+1}}{(n+1)!}[/tex]

So, at (a = 1) and (n = 2) the above expression becomes:

[tex]\rm |R_2(x)| \leq \dfrac{m(|x-1|)^{2+1}}{(2+1)!}[/tex]

[tex]\rm |R_2(x)| \leq \dfrac{m(|x-1|)^{3}}{(3)!}[/tex]    ---- (1)

where m is (  [tex]\rm |f^{n+1}(x)|\leq m[/tex] ).

[tex]\rm |f^{2+1}(x)|\leq m[/tex]

[tex]\rm |f^{3}(x)|\leq m[/tex]

[tex]\rm f'''(x)=-\dfrac{6}{x^4}[/tex]

m is maximum on [0.6,1.4]. So, if x = 0.6 then:

[tex]\rm f'''(0.6)=-\dfrac{6}{0.6^4} = -46.2962963[/tex]

So, [tex]\rm |f'''(0.6)|=46.2962963[/tex]

Now, put the value of m in equation (1).

[tex]\rm |R_2(x)| \leq \dfrac{46.2962963(|x-1|)^{3}}{6}[/tex]

[tex]\rm |R_2(x)| \leq 7.716049383(|x-1|)^{3}[/tex]

For more information, refer to the link given below:

https://brainly.com/question/23044118