Respuesta :

Answer:

[tex]AD \approx 15.6\,cm[/tex]

Step-by-step explanation:

The value of AD is found by using the Pyhagorean Theorem:

[tex]AD = \sqrt{CD^{2}+AC^{2}}[/tex]

[tex]AD = \sqrt{CD^{2}+4\cdot AB^{2}}[/tex]

[tex]AD^{2} - 4\cdot AB^{2} = CD^{2}[/tex]

Besides, BD is measured in terms of the Pythagorean Theorem:

[tex]BD = \sqrt{CD^{2}+AB^{2}}[/tex]

[tex]BD^{2} - AB^{2} = CD^{2}[/tex]

By Algebra:

[tex]AD^{2}-4\cdot AB^{2} = BD^{2} - AB^{2}[/tex]

[tex]AD^{2} = BD^{2}+3\cdot AB^{2}[/tex]

[tex]AD = \sqrt{BD^{2}+3\cdot AB^{2}}[/tex]

[tex]AD = \sqrt{(13\,cm)^{2}+3\cdot (5\,cm)^{2}}[/tex]

[tex]AD \approx 15.6\,cm[/tex]

Answer:

15.6 cm

Step-by-step explanation:

Given that AB = 5 cm, then BC = 5 cm, and AC = AB+BC = 10 cm

Applying Pythagorean theorem to triangle BCD:

BD² = BC² + CD²

CD = √(BD² - BC²)

CD = √(13² - 5²) = 12 cm

Applying Pythagorean theorem to triangle ACD:

AD² = AC² + CD²

AD = √(AC² + CD²)

AD = √(10² + 12²) = 15.6 cm