Respuesta :

Answer:IDK

Step-by-step explanation:it depends on the graph

Answer:

(2[tex]\sqrt{2}[/tex], 135° )

Step-by-step explanation:

To convert from rectangular to polar form, that is

(x, y ) → (r, Θ ), with

r = [tex]\sqrt{x^2+y^2}[/tex]

tanΘ = [tex]\frac{y}{x}[/tex]

Given - 2 + 2i, then

r = [tex]\sqrt{(-2)^2+2^2}[/tex] = [tex]\sqrt{4+4}[/tex] = [tex]\sqrt{8}[/tex] = 2[tex]\sqrt{2}[/tex]

Since - 2 + 2i is in the second quadrant then Θ must be in the second quadrant.

tanΘ = [tex]\frac{2}{-2}[/tex] = - 1, thus

Θ = [tex]tan^{-1}[/tex] (- 1) = - 45°, hence

Θ = 180° - 45° = 135° ← in second quadrant

Thus

- 2 + 2i → (2[tex]\sqrt{2}[/tex], 135° )