Respuesta :
Answer:
x = -15 and x = 1
Step-by-step explanation:
Since we have to use the complete the square method, we first need to rewrite the equation in the form [tex]x^{2}+2ax+a^{2}=(x+a)^{2}[/tex].
This results in [tex]x^{2} + 14x + 7^{2} = 15 + 7^{2}[/tex].
Next, we simplify the equation to get [tex]x^{2} +14x+7^{2} = 64[/tex].
Factoring the left side gives us [tex](x+7)^{2} = 64[/tex].
Finally we solve the equations: [tex]x+7=\sqrt{64}[/tex] and [tex]x+7=-\sqrt{64}[/tex].
This gives us x=1, and x=-15