Answer:
a) Maximum altitude of the projectile, [tex]h = 2.83 * 10^5 m[/tex]
b) v = 10885.7 m/s
Explanation:
a) Mass of the earth, [tex]m_{1} = 5.98 * 10^{24} kg[/tex]
Mass of the projectile = [tex]m_{2}[/tex]
Launch speed, v = 2.31 * 10³ m/s
Earth radius, r = 6.36 ✕ 10⁶ m
Workdone by the projectile against gravity
[tex]W = Gm_{1} m_{2} (\frac{1}{r} - \frac{1}{r+h} )\\W = 5.98 * 10^{24} *6.67 * 10^{-11} m_{2} (\frac{1}{6.36*10^{6} } - \frac{1}{r+h} )\\[/tex]
[tex]W = 398866 * 10^{9} m_{2}(\frac{1}{6.36*10^{6} } - \frac{1}{r+h} )[/tex]...............(1)
Kinetic energy of the projectile:
[tex]KE = \frac{1}{2} m_{2} v^{2}[/tex]
[tex]KE =2668050 m_{2}[/tex]...................(2)
Equating (1) and (2) based on the law of energy conservation
[tex]398866 * 10^{9} m_{2}(\frac{1}{6.36*10^{6} } - \frac{1}{r+h} ) = 2668050 m_{2}\\\frac{1}{6.36*10^{6} } - \frac{1}{r+h} = 0.00000000669\\0.00000015723 - 0.00000000669 = \frac{1}{r+h}\\0.00000015054 = \frac{1}{(6.36*10^{6}) +h}\\(6.36*10^{6}) +h = 6642633.424\\h = 6642633.424 - (6.36*10^{6})\\h = 282633.42 m\\h = 2.83 * 10^5 m[/tex]
b) Smallest required change in the satellite speed
Altitude, h = 352 km = 352000 m
Earth radius, r = 6.38 * 10⁶ m
[tex]v = \sqrt{\frac{2Gm_{1} }{(r+h)} } \\v = \sqrt{\frac{2* 6.67 * 10^{-11} *5.98*10^{24} }{(6.38*10^6+352*10^3)} }[/tex]
v = 10885.7 m/s