Respuesta :
A=number of seats in section A
B=number of seats in section B
C=number of seats in section C
We can suggest this system of equations:
A+B+C=55,000
A=B+C ⇒A-B-C=0
28A+16B+12C=1,158,000
We solve this system of equations by Gauss Method.
1 1 1 55,000
1 -1 -1 0
28 16 12 1,158,000
1 1 1 55,000
0 -2 -2 -55,000 (R₂-R₁)
0 12 16 382,000 (28R₁-R₂)
1 1 1 55,000
0 -2 -2 -55,000
0 0 4 52,000 (6R₂+R₃)
Therefore:
4C=52,000
C=52,000/4
C=13,000
-2B-2(13,000)=-55,000
-2B-26,000=-55,000
-2B=-55,000+26,000
-2B=-29,000
B=-29,000 / -2
B=14,500.
A + 14,500+13,000=55,000
A+27,500=55,000
A=55,000-27,500
A=27,500.
Answer: there are 27,500 seats in section A, 14,500 seats in section B and 13,000 seats in section C.
B=number of seats in section B
C=number of seats in section C
We can suggest this system of equations:
A+B+C=55,000
A=B+C ⇒A-B-C=0
28A+16B+12C=1,158,000
We solve this system of equations by Gauss Method.
1 1 1 55,000
1 -1 -1 0
28 16 12 1,158,000
1 1 1 55,000
0 -2 -2 -55,000 (R₂-R₁)
0 12 16 382,000 (28R₁-R₂)
1 1 1 55,000
0 -2 -2 -55,000
0 0 4 52,000 (6R₂+R₃)
Therefore:
4C=52,000
C=52,000/4
C=13,000
-2B-2(13,000)=-55,000
-2B-26,000=-55,000
-2B=-55,000+26,000
-2B=-29,000
B=-29,000 / -2
B=14,500.
A + 14,500+13,000=55,000
A+27,500=55,000
A=55,000-27,500
A=27,500.
Answer: there are 27,500 seats in section A, 14,500 seats in section B and 13,000 seats in section C.
The number of seats is an illustration of simultaneous equations.
The number of seats in each section is: [tex]\mathbf{A = 27500}[/tex] [tex]\mathbf{B = 14500}[/tex] [tex]\mathbf{C = 13000}[/tex]
From the question, we have:
The take in from the sold-out event
[tex]\mathbf{28A + 16B + 12C = 1158000}[/tex]
The total number of seats is:
[tex]\mathbf{A + B + C = 55000}[/tex]
The relationship between seats in sections A, B and C
[tex]\mathbf{A = B + C }[/tex]
Substitute [tex]\mathbf{A = B + C }[/tex] in [tex]\mathbf{A + B + C = 55000}[/tex] and [tex]\mathbf{28A + 16B + 12C = 1158000}[/tex]
[tex]\mathbf{A + B + C = 55000}[/tex]
[tex]\mathbf{B + C + B + C = 55000}[/tex]
[tex]\mathbf{2B + 2C = 55000}[/tex]
Divide through by 2
[tex]\mathbf{B + C =27500}[/tex]
Make B the subject
[tex]\mathbf{B =27500 - C}[/tex]
Substitute [tex]\mathbf{A = B + C }[/tex] in [tex]\mathbf{28A + 16B + 12C = 1158000}[/tex]
[tex]\mathbf{28A + 16B + 12C = 1158000}[/tex]
[tex]\mathbf{28(B + C) + 16B + 12C = 1158000}[/tex]
[tex]\mathbf{28B + 28C+ 16B + 12C = 1158000}[/tex]
[tex]\mathbf{28B + 16B+ 28C + 12C = 1158000}[/tex]
[tex]\mathbf{44B+ 40C = 1158000}[/tex]
Substitute [tex]\mathbf{B =27500 - C}[/tex]
[tex]\mathbf{44(27500- C)+ 40C = 1158000}[/tex]
[tex]\mathbf{1210000- 44C+ 40C = 1158000}[/tex]
[tex]\mathbf{1210000- 4C = 1158000}[/tex]
Collect like terms
[tex]\mathbf{ 4C = 1210000-1158000}[/tex]
[tex]\mathbf{ 4C = 52000}\\[/tex]
Divide both sides by 4
[tex]\mathbf{C = 13000}[/tex]
Substitute [tex]\mathbf{C = 13000}[/tex] in [tex]\mathbf{B =27500 - C}[/tex]
[tex]\mathbf{B = 27500 - 13000}[/tex]
[tex]\mathbf{B = 14500}[/tex]
Recall that: [tex]\mathbf{A = B + C }[/tex]
[tex]\mathbf{A = 14500 + 13000}[/tex]
[tex]\mathbf{A = 27500}[/tex]
Hence, the number of seats in each section is:
[tex]\mathbf{A = 27500}[/tex]
[tex]\mathbf{B = 14500}[/tex]
[tex]\mathbf{C = 13000}[/tex]
Read more about simultaneous equations at:
https://brainly.com/question/16763389