Respuesta :
[tex]lim_{x \rightarrow -6} \frac{x^2-36}{x+6} \\ =lim_{x \rightarrow -6} \frac{(x-6)(x+6)}{x+6} \\ =lim_{x \rightarrow -6} (x-6) \\ =-6-6=-12[/tex]
Answer:
-12
Step-by-step explanation:
[tex]\lim_{x \to \ -6} \frac{x^2-36}{x+6}[/tex]
We factor the numerator and try to simplify the fraction as much as we can.
[tex]x^2-36 = x^2 - 6^2[/tex]
Apply a^2 - b^2 formula (a+b)(a-b)
[tex]x^2-36 = x^2 - 6^2=(x+6)(x-6)[/tex]
[tex]\lim_{x \to \ -6} \frac{(x+6)(x-6}{x+6}[/tex]
Cancel out x+6 from top and bottom
[tex]\lim_{x \to \ -6}(x-6)[/tex]
Plug in -6 for x
-6-6 = -12