Respuesta :

Answer:

[tex]proj_uw=6.2i-4.2j[/tex]

Step-by-step explanation:

The projection of a vector [tex]v[/tex] onto a vector [tex]u[/tex] is defined as the projection of the vector [tex]v[/tex] on the line that contains the vector [tex]u[/tex]. It can be calculated  using the following formula:

[tex]proj_uv=\frac{u\cdot v}{||u||^2} u[/tex]

Where:

[tex]u\cdot v[/tex]

Is the dot product between [tex]u[/tex] and [tex]v[/tex] which is given by:

[tex]u\cdot v= $\sum_{i=1}^{n} u_iv_i= u_1v_1+u_2v_2+...+u_nv_n$[/tex]

and:

[tex]||u||[/tex]

Is the magnitude of vector which can be calculated as follows:

[tex]||u||=\sqrt{u_1^2+u_2^2+...+u_n^2}[/tex]

In this sense, the projection of vector w onto vector u is:

[tex]proj_uw=\frac{u\cdot w}{||u||^2} u[/tex]

Where the dot product between [tex]u[/tex] and [tex]w[/tex] is:

[tex]u\cdot w =(9*19)+(-6*15)=171-90=81[/tex]

And the magnitude of [tex]u[/tex] is:

[tex]||u||=\sqrt{9^2+(-6)^2} = 3 \sqrt{13}[/tex]

Thus:

[tex]proj_uw=\frac{u\cdot w}{||u||^2} u=\frac{81}{117} \langle9,-6\rangle=\langle6.23,-4.15\rangle\approx6.2i-4.2j[/tex]

Answer:

A on edge

Step-by-step explanation:

Got it right on quiz (: