Determine between which consecutive integers the real zeros of f(x) = x^3 – 3x + 1 are located.

a. between -1&0, 0&1 and 2&3

C. between -1&0,0&1 and 1&2

b. between -2&-1, 0&1 and 1&2

d between -2&1, 0&1 and 1&2

Respuesta :

Answer:

B) [tex]-2 < x -1[/tex], [tex]0 < x < 1[/tex] and [tex]1 < x < 2[/tex]

Step-by-step explanation:

The value of the function evaluated at different points are described below:

[tex]f(-2) = -1[/tex]

[tex]f(-1) = 3[/tex]

[tex]f(0) = 1[/tex]

[tex]f(1) = -1[/tex]

[tex]f(2) = 3[/tex]

The intervals where roots of the polynomial roots exists are:

[tex]-2 < x -1[/tex], [tex]0 < x < 1[/tex] and [tex]1 < x < 2[/tex]