Respuesta :

Answer:

line

Step-by-step explanation:

(4x^2-4x-8)/(2x+2)=(4(x^2-x-2))/(2(x+1))=(2(x+1)(x-2))/(x+1)=2(x-2)=2x-4

y=2x-4

(0;-4),(2;0)

Ver imagen MannersMakethMan

The graph that represents the function [tex]\mathbf{f(x) = \frac{4x^2 - 4x - 8}{2x + 2}}[/tex] is the graph of the function [tex]\mathbf{f(x) = 2x - 4}[/tex]

The function is given as:

[tex]\mathbf{f(x) = \frac{4x^2 - 4x - 8}{2x + 2}}[/tex]

Factor out 2

[tex]\mathbf{f(x) = \frac{2(2x^2 - 2x - 4)}{2(x + 1)}}[/tex]

Cancel out common factors

[tex]\mathbf{f(x) = \frac{2x^2 - 2x - 4}{x + 1}}[/tex]

Expand the numerator

[tex]\mathbf{f(x) = \frac{2x^2 -4x + 2x - 4}{x + 1}}[/tex]

Factorize

[tex]\mathbf{f(x) = \frac{2x(x -2) + 2(x - 2)}{x + 1}}[/tex]

Factor out x - 2

[tex]\mathbf{f(x) = \frac{(2x +2)(x - 2)}{x + 1}}[/tex]

Factor out 2

[tex]\mathbf{f(x) = \frac{2(x +1)(x - 2)}{x + 1}}[/tex]

Cancel out the common factors

[tex]\mathbf{f(x) = 2(x - 2)}[/tex]

Open the brackets

[tex]\mathbf{f(x) = 2x - 4}[/tex]

See attachment for the graph of [tex]\mathbf{f(x) = 2x - 4}[/tex]

Hence, the graph that represents the function [tex]\mathbf{f(x) = \frac{4x^2 - 4x - 8}{2x + 2}}[/tex] is the graph of the function [tex]\mathbf{f(x) = 2x - 4}[/tex]

Read more about graphs and functions at:

https://brainly.com/question/1880610

Ver imagen MrRoyal