Respuesta :

Answer:

The standard form of the equation of the circle is [tex]x^2+y^2=1[/tex].

Step-by-step explanation:

A circle is the set of points in a plane that lie a fixed distance, called the radius, from any point, called the center.

The equation of a circle in standard form is

                                             [tex](x-h)^2+(y-k)^2=r^2[/tex]

where r is the radius of the circle,  and h, k are the coordinates of its center.

When the center of the circle coincides with the origin [tex]h=k=0[/tex], so

                                            [tex](x-0)^2+(y-0)^2=r^2\\x^2+y^2=r^2[/tex]

We are also told that the circle contains the point  (0, 1), so we will use that information to find the radius r.

                                                   [tex]0^2+1^2=r^2\\r^2=0^2+1^2\\r^2=1\\r=\sqrt{1}[/tex]

Therefore, the standard form of the equation of the circle is [tex]x^2+y^2=1[/tex].