Respuesta :

Answer:

-The solutions are:

[tex]x = 10[/tex]

[tex]x = -2[/tex]

Step-by-step explanation:

-Solve the equation:

[tex](x-3)(x-5) =35[/tex]

-Use Distributive property to multiply the [tex]x -3[/tex] by [tex]x -5[/tex] and combine like terms:

[tex](x-3)(x-5) =35[/tex]

[tex]x^2-8x + 15 = 35[/tex]

-Subtract 35 from 15:

[tex]x^2 - 8x + 15 -35 = 35 -35[/tex]

[tex]x^2 - 8x - 20 =0[/tex]

-Use the quadratic formula and substitute 1 for [tex]a[/tex], -8 for [tex]b[/tex] , and -20 for [tex]c[/tex] :

[tex]\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

[tex]\frac{-(-8)\pm\sqrt{(-8)^2-4(-20)} }{2}[/tex]

-Simplify the 8 by the exponent 2:

[tex]x = \frac{-(-8)\pm\sqrt{(-8)^2-4(-20)} }{2}[/tex]

[tex]x = \frac{-(-8)\pm\sqrt{64-4(-20)} }{2}[/tex]

-Multiply -20 by -4:

[tex]x = \frac{-(-8)\pm\sqrt{64-4(-20)} }{2}[/tex]

[tex]x = \frac{-(-8)\pm\sqrt{64+80} }{2}[/tex]

-Add both 64 and 80 together:

[tex]x = \frac{-(-8)\pm\sqrt{64+80} }{2}[/tex]

[tex]x = \frac{-(-8)\pm\sqrt{144} }{2}[/tex]

-Take the square root of 144:

[tex]x = \frac{-(-8)\pm\sqrt{144} }{2}[/tex]

[tex]x = \frac{-(-8)\pm 12 }{2}[/tex]

-Change -8 to 8 , because negative and negative equals a positive:

[tex]x = \frac{-(-8)\pm 12 }{2}[/tex]

[tex]x =\frac{8\pm 12 }{2}[/tex]

-Solve the equation when [tex]\pm[/tex] is in addition. So, you would add 8 and 12 together:

[tex]x =\frac{8\pm 12 }{2}[/tex]

[tex]x =\frac{8 + 12 }{2}[/tex]

[tex]x =\frac{20 }{2}[/tex]

-Divide 20 by 2:

[tex]x =\frac{20}{2}[/tex]

[tex]x = 10[/tex]

So, the first answer is [tex]x = 10[/tex].

-To find the second answer, you need to solve the equation when [tex]\pm[/tex] is in subtraction. So, you would subtract both 8 and 12 together:

[tex]x =\frac{8\pm 12 }{2}[/tex]

[tex]x =\frac{8 - 12 }{2}[/tex]

[tex]x = \frac{-4}{2}[/tex]

-Divide -4 by 2:

[tex]x = \frac{-4}{2}[/tex]

[tex]x = -2[/tex]

So, the second answer is [tex]x = -2[/tex] .

The solutions are:

[tex]x = 10[/tex]

[tex]x = -2[/tex]

Answer:

10 on exam

Step-by-step explanation: