Respuesta :
Answer:
a) F. H 0 : μ O ≥ μ C
H 1 : μ O < μ C
b) B. two-tailed
d) [tex]t=\frac{(2.91-2.96)-0}{\sqrt{\frac{0.05^2}{60}+\frac{0.03^2}{60}}}}=-6.64[/tex]
e) [tex]p_v =P(t_{118}<-6.64)=5.04x10^{-10}[/tex]
f) B. Reject the null hypothesis
Step-by-step explanation:
Information provided
[tex]\bar X_{O}=2.91[/tex] represent the mean for the Orange Coast
[tex]\bar X_{C}=2.96[/tex] represent the mean for the Coastline
[tex]s_{O}=0.05[/tex] represent the sample standard deviation for Orange Coast
[tex]s_{C}=0.03[/tex] represent the sample standard deviation for Coastline
[tex]n_{O}=60[/tex] sample size for Orange Coast
[tex]n_{C}=60[/tex] sample size for Coastline
[tex]\alpha=0.005[/tex] Significance level provided
t would represent the statistic
Part a
For this case we want to test the claim that the mean GPA of Orange Coast students is smaller than the mean GPA of Coastline students
Null hypothesis:[tex]\mu_{O} \geq \mu_{C}[/tex]
Alternative hypothesis:[tex]\mu_{O} < \mu_{C}[/tex]
F. H 0 : μ O ≥ μ C
H 1 : μ O < μ C
Part b
For this case we need to conduct a left tailed test.
B. two-tailed
Part d
The statistic is given by:
[tex]t=\frac{(\bar X_{O}-\bar X_{C})-\Delta}{\sqrt{\frac{s^2_{O}}{n_{O}}+\frac{s^2_{C}}{n_{C}}}}[/tex] (1)
And the degrees of freedom are given by [tex]df=n_1 +n_2 -2=60+60-2=118[/tex]
Replacing the info we got:
[tex]t=\frac{(2.91-2.96)-0}{\sqrt{\frac{0.05^2}{60}+\frac{0.03^2}{60}}}}=-6.64[/tex]
Part e
We can calculate the p value with this probability:
[tex]p_v =P(t_{118}<-6.64)=5.04x10^{-10}[/tex]
Part f
Since the p value is a very low value compared to the significance level given of 0.005 we can reject the null hypothesis.
B. Reject the null hypothesis